Predicting PM2.5 concentrations using EEMD-ALSTM model #AirQualityPrediction (2024)

  • Bai, K. X., Li, K., Chang, N. B. & Gao, W. Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements. Environ. Pollut. 254, 113047. https://doi.org/10.1016/j.envpol.2019.113047 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Zhang, D. Y., Bai, K. X., Zhou, Y. Y., Shi, R. H. & Ren, H. Y. Estimating ground-level concentrations of multiple air pollutants and their health impacts in the Huaihe River Basin in China. Int. J. Env. Res. Pub. He. 16(4), 579. https://doi.org/10.3390/ijerph16040579 (2019).

    Article
    CAS

    Google Scholar

  • Byun, D. & Schere, K. L. Review of the governing equations computational algorithms and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59(2), 51–77. https://doi.org/10.1115/1.2128636 (2006).

    Article
    ADS

    Google Scholar

  • Jin, Q., Fang, X. Y., Wen, B. & Shan, A. D. Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014. Chemosphere 183, 429–436. https://doi.org/10.1016/j.chemosphere.2017.05.133 (2017).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204. https://doi.org/10.1038/s41586-019-0912-1 (2019).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhou, H. Y., Zhang, F., Du, Z. J. & Liu, R. Y. Forecasting PM2.5 using hybrid graph convolution-based model considering dynamic wind-field to offer the benefit of spatial interpretability. Environ. Pollut. 273, 116473. https://doi.org/10.1016/j.envpol.2021.116473 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444. https://doi.org/10.1038/nature14539 (2015).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Liu, Y. D. ynamics evolution prediction from time series data with recurrent neural networks in a complex system. Int. J. Mod. Phys. C 34(8), 2350099. https://doi.org/10.1142/S0129183123500997 (2023).

    Article
    ADS

    Google Scholar

  • Elman, J. L. Finding structure in time. Cognitive Sci. 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1 (1990).

    Article

    Google Scholar

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 (1997).

    Article
    CAS
    PubMed

    Google Scholar

  • Wang, W. L., Mao, W. J., Tong, X. L. & Xu, G. A novel recursive model based on a convolutional long short-term memory neural network for air pollution prediction. Remote Sens. Basel 13(7), 1284. https://doi.org/10.3390/rs13071284 (2021).

    Article
    ADS

    Google Scholar

  • Wang, S. Y., Zhang, S. B., Huang, X. P. & Chang, L. B. A high-efficiency spaceborne processor for hybrid neural networks. Neurocomputing 541, 126230. https://doi.org/10.1016/j.neucom.2023.126230 (2023).

    Article

    Google Scholar

  • Ma, H. & Liang, S. L. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 273, 112985. https://doi.org/10.1016/j.rse.2022.112985 (2022).

    Article

    Google Scholar

  • Parsaeimehr, E., Fartash, M. & Torkestani, J. A. Improving feature extraction using a hybrid of CNN and LSTM for entity identification. Neural Process. Lett. 55, 5979–5994. https://doi.org/10.1007/s11063-022-11122-y (2023).

    Article

    Google Scholar

  • Niu, Z. Y., Zhong, G. Q. & Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 452, 48–62. https://doi.org/10.1016/j.neucom.2021.03.091 (2021).

    Article

    Google Scholar

  • Huang, G. Y., Li, X. Y., Zhang, B. & Ren, J. D. PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition. Sci. Total Environ. 768, 144516. https://doi.org/10.1016/j.scitotenv.2020.144516 (2021).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Yan, X. et al. Cooperative simultaneous inversion of satellite-based real-time PM2.5 and ozone levels using an improved deep learning model with attention mechanism. Environ. Pollut. 327, 121509. https://doi.org/10.1016/j.envpol.2023.121509 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Shadi, A. & Jamil, A. Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5. Atmos. Environ. 142, 465–474. https://doi.org/10.1016/j.atmosenv.2016.08.007 (2016).

    Article
    CAS

    Google Scholar

  • Yang, H., Zhao, J. L. & Li, G. H. A new hybrid prediction model of PM2.5 concentration based on secondary decomposition and optimized extreme learning machine. Environ. Sci. Pollut. R. 29(44), 67214–67241. https://doi.org/10.1007/s11356-022-20375-y (2022).

    Article
    CAS

    Google Scholar

  • Yang, H., Wang, W. Q. & Li, G. H. Prediction method of PM2.5 concentration based on decomposition and integration. Measurement 216, 112954. https://doi.org/10.1016/j.measurement.2023.112954 (2023).

    Article

    Google Scholar

  • Zhu, J. Q., Deng, F., Zhao, J. C. & Zheng, H. Attention-based parallel networks (APNet) for PM2.5 spatiotemporal prediction. Sci. Total Environ. 769, 145082. https://doi.org/10.1016/j.scitotenv.2021.145082 (2021).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Al-Janabi, S., Alkaim, A., Al-Janabi, E., Aljeboree, A. & Mustafa, M. Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP). Neural Comput. Appl. 33(21), 14199–14229. https://doi.org/10.1007/s00521-021-06067-7 (2021).

    Article

    Google Scholar

  • Usmani, R. S. A. et al. Artificial intelligence techniques for predicting cardiorespiratory mortality caused by air pollution. Int. J. Environ. Sci. Te. 20(3), 2623–2634. https://doi.org/10.1007/s13762-022-04149-0 (2023).

    Article
    CAS

    Google Scholar

  • Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995. https://doi.org/10.1098/rspa.1998.0193 (1998).

    Article
    ADS
    MathSciNet

    Google Scholar

  • Wu, Z. & Huang, N. E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. A 460(2046), 1597–1611. https://doi.org/10.1098/rspa.2003.1221 (2004).

    Article
    ADS

    Google Scholar

  • Gupta, M., Wadhvani, R. & Rasool, A. A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network. Knowl. Based Syst. 259, 110070. https://doi.org/10.1016/j.knosys.2022.110070 (2023).

    Article

    Google Scholar

  • Harichandran, A., Raphael, B. & Mukherjee, A. Equipment activity recognition and early fault detection in automated construction through a hybrid machine learning framework. Comput. Aided Civ. Inf. 38(2), 253–268. https://doi.org/10.1111/mice.12848 (2023).

    Article

    Google Scholar

  • Li, B., Liu, F. Y., Song, Q. K., Zhang, D. P. & Qiu, H. J. State estimation of complex-valued neural networks with leakage delay: A dynamic event-triggered approach. Neurocomputing 520, 230–239. https://doi.org/10.1016/j.neucom.2022.11.079 (2023).

    Article

    Google Scholar

  • Almutairi, M. S., Almutairi, K. & Chiroma, H. Hybrid of deep recurrent network and long short term memory for rear-end collision detection in fog based internet of vehicles. Expert Syst. Appl. 213, 119033. https://doi.org/10.1016/j.eswa.2022.119033 (2023).

    Article

    Google Scholar

  • Camastra, F., Capone, V., Ciaramella, A., Riccio, A. & Staiano, A. Prediction of environmental missing data time series by support vector machine regression and correlation dimension estimation. Environ. Modell. Softw. 150, 105343. https://doi.org/10.1016/j.envsoft.2022.105343 (2022).

    Article

    Google Scholar

  • Guo, L., Fang, W. G., Zhao, Q. H. & Wang, X. The hybrid prophet-svr approach for forecasting product time series demand with seasonality. Comput. Ind. Eng. 161, 107598. https://doi.org/10.1016/j.cie.2021.107598 (2021).

    Article

    Google Scholar

  • Thissen, U., Van Brakel, R., De Weijer, A. P., Melssen, W. J. & Buydens, L. M. C. Using support vector machines for time series prediction. Chemometr. Intell. Lab. Syst. 69(1–2), 35–49. https://doi.org/10.1016/S0169-7439(03)00111-4 (2003).

    Article
    CAS

    Google Scholar

  • Lozano, M., Fiz, J. A. & Jané, R. Automatic differentiation of normal and continuous adventitious respiratory sounds using ensemble empirical mode decomposition and instantaneous frequency. IEEE J. Biomed. Health 20(2), 486–497. https://doi.org/10.1109/JBHI.2015.2396636 (2015).

    Article

    Google Scholar

  • Predicting PM2.5 concentrations using EEMD-ALSTM model #AirQualityPrediction (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Aron Pacocha

    Last Updated:

    Views: 5706

    Rating: 4.8 / 5 (48 voted)

    Reviews: 87% of readers found this page helpful

    Author information

    Name: Aron Pacocha

    Birthday: 1999-08-12

    Address: 3808 Moen Corner, Gorczanyport, FL 67364-2074

    Phone: +393457723392

    Job: Retail Consultant

    Hobby: Jewelry making, Cooking, Gaming, Reading, Juggling, Cabaret, Origami

    Introduction: My name is Aron Pacocha, I am a happy, tasty, innocent, proud, talented, courageous, magnificent person who loves writing and wants to share my knowledge and understanding with you.